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The plan

● The problem setting
○ ~“adversarial” multi-armed bandit problems 
○ Issues:

■ Bounded rationality
■ Paradoxes of self-references
■ Newcomb-like problems
■ Counterfactuals

● Two or three approaches
○ Regret learning
○ (Optional: Predictors (e.g., Garrabrant inductors) + importance-weighted estimation)
○ Bounded rational inductive agents



The problem setting
Multi-armed bandits

Reward: 3 Reward: ? Reward: ?

Goal: Learn to choose the
(myopically) best box.

Meta-goal: Specify what it means to be 
a rational learner in this setting.



A conceptually easy example – learning the means
In the beginning, environment generates μ1,...,μ10~Uniform([0,1]).

Reward of box i ~ Normal(μi,1)

A rational agent should, given enough time, figure out what the best box is and in the limit 
learn to pull that arm with frequency 1.

(To guarantee optimality with probability 1, you need to take each box (1,...,10) infinitely 
many times.)

How do you learn the optimal arm fastest?

● For the purpose of this talk (and most of my work), we don’t really care.
● But there’s lots of work on this sort of question in the multi-armed bandit literature.

Box no. 10…Box no. 1



Cases of bounded rationality

0.4
2100-th 
binary 

digit of π

Say you’ve already learned (mathematical) language…

● In some sense, you should take the right-hand box iff the 2100-th binary digit of π 
is 1, but that might be difficult…

● Not knowing the 2100-th digit of π, you should take the right box!



Paradoxes of self reference and Newcomb-like scenarios

1 if c(this problem) = left box;
0 otherwise0.5

● Clearly you shouldn’t take the right box.
● If you know that you’re taking the left box, you should take the right box.

Agent is computer program c.



General idea: consider rationality relative to hypothesis 
class



General idea: consider rationality relative to hypothesis 
class

● Consider hypothesis set.
○ E.g.:

■ All polynomial-time algorithms (bounded rationality)
■ Your friends Alice, Bob and Charlie who advise you

○ Generally contains some bad / false hypotheses.
● Rationality requirement of the form:

“The agent shouldn’t be outperformed by any of the given hypotheses (in the limit).”
● The crux is: What is the “no outperformance” condition to satisfy?
● Examples:

○ Garrabrant inductors
○ In this talk:

■ Regret learning
■ Bounded rational inductive agents

○ Bayes? Infra-Bayes?
○ Negative example: Train a single neural net with gradient descent.

● For simplicity: Assume a finite set of hypotheses for this talk.
(Extending to the infinite case is a matter of accounting.)

● People like to give the hypotheses different names: traders, experts, bidders, …



A bandit problem specifies the following at each time t:
● a finite list of available boxes (“arms”),
● a function Rt mapping boxes to rewards.

These may depend on agent choices at times 1,...,t-1. (“Reactive” bandit)

An expert (for the given bandit problem) specifies at each time t one of the available boxes.

Regret learning – preliminaries



At each time t, agent chooses box Bt to get reward Rt(Bt).

Consider a specific expert who recommends boxes Bt’ which obtain (counterfactual) rewards Rt(Bt’). 

Then the cumulative regret at time T to the expert is

Σt=1,..,T Rt(Bt’) – Rt(Bt).

Rationality criterion: A rational (Hannan-consistent / no regret) learner for a given set of experts E 
has sublinear regret (as T→∞) to each expert in E and in all bandit problems.

(Sublinear regret ⇔ Average per-round regret→0 as T→∞.)

For an introduction, see: Lattimore and Szepesvári: Bandit Algorithms. Available for free online.

Compare ratificationism in the decision theory of Newcomb-like problems.

Regret learning



In the beginning, environment generates μ1,...,μ10~Uniform([0,1]).

Reward of box i ~ Normal(μi,1)

Assume you have at least the 10 constant experts.

Sublinear regret ⇔ take argmaxi μi with limit frequency 1.

Regret learning: conceptually simple example

Box no. 10…Box no. 1



Regret learning and bounded rationality

yt in [0,1]
2t-th 

binary 
digit of π

Say you have the following three experts:
● The one that always recommends left;
● The one that always recommends right; and
● The one that recommends left if yt ≥ ½ and right otherwise.

Example agents – do they ensure sublinear regret?
● Following the third expert? ✔
● Following the first or second expert? ✖
● Right box if 2t-th binary digit of π is 1; left box otherwise. ✔



Deterministic agents can’t guarantee sublinear regret

1 if c(this problem) = left box;
0 otherwise0.5

Agent is computer program c .

● If you pick the left box with limit frequency 1, you have linear regret to 
the expert who always recommends the right box.

● Otherwise you have regret to the expert who always recommends the 
left box.



Solution in regret learning: use randomization

● Assumption: The agent can independently (from the environment) randomize.
● Experts may be stochastic, but are not allowed to recommend probability 

distributions!



Example: Rock–paper–scissors against Omega

Imagine expert A samples its recommendation Rock/Paper/Scissors uniformly at 
random.

Then low regret requires convergence to mixing uniformly over Rock, Paper, 
Scissors.

Rock Paper Scissors



Existence of regret minimizers

Even with independent randomization, it is not obvious whether we can design an 
algorithm that ensures sublinear regret… However, it turns out:

Theorem: For any (finite) set of experts, there is an algorithm that takes expert 
advice as input, chooses boxes stochastically and guarantees sublinear regret 
w.p. 1 for all (potentially “reactive”) bandit problems.

This result seems conceptual. One might hope that it has a conceptual proof?

Alas…



The algorithm*

Screenshots from Lattimore and Szepesvári: Bandit Algorithms. 
Available for free online.

*Actually, this is the algorithm for a slightly simpler problem.

Extremely high-level:

Keep track of how well each expert 
does when following their 
recommendation.

Randomize over what expert to follow,
giving higher probability mass to 
experts that did well.



The proof I



The proof II



The proof III



The proof IV



Why I find regret learning unsatisfactory



Newcomb’s problem

1 if Omega 
predicts that 
you take this 
box;
0 otherwise

● Optimal (EDT/TDT/UDT/FDT/…): Take the left box!
(assuming Omega is a good enough predictor)

● But taking the left box incurs a regret of epsilon (to the “always the right box” expert).
● Regret learning requires that you learn to always take the right box.

Same as the 
other box +ε



1 if you take 
this box with 
probability 

≤½;
0 otherwise

● Ideally take the left box with probability ½.
● But this incurs linear regret (to the expert who says you should always take the 

left box).
● Depending on your set of experts, regret learning requires some wacky 

oscillation…
● This all holds even if one of the experts tells you exactly what’s going on.

0.5

Regret learning is a waste of randomizing



Exploration?

● You’ll often hear people refer to randomization in regret learning as 
exploration.

● They’re not telling you the whole truth!
● Randomization is also about:

○ Making some experts do worse (to achieve sublinear regret).
○ Making the counterfactuals well defined.



Optional: Prediction + importance-weighted estimation
(Importance-weighted estimators are one ingredient of regret learning algorithms.)



Idea 1: Don’t we want to maximize expected utility?

Imagine we could somehow get something that predicts expected values.

Then shouldn’t we just take the box B that maximizes E[R(B)]?



Idea 2: We could learn to estimate expected utilities

Say in each time step t, we have taken box Bt and received reward rt.

Then could, e.g., use squared error loss to train a model on training data set
{Bt → rt}t.

(Or use something like a Garrabrant inductor, etc.)



Problem: Counterfactuals

5 10

Model:     E[5] = 5                     E[10] = –100 

● Following the model, the agent always takes the left box.
● The incorrect prediction about the right box is never refuted.

Compare:
Othman and Sandholm (2010): Decision Rules and Decision Markets. AAMAS.
Garrabrant (2017): Two Major Obstacles for Logical Inductor Decision Theory. Alignment Forum.
“5 and 10 problem”



Idea 3: randomized choice + importance-weighted 
estimation
At each time t choose probability distribution σt over the boxes.

May give most weight to the optimal action, but have to give positive (not too quickly vanishing) probability 
to all actions.

Then from each time step t we get the following data:

● Bt →R(Bt)/σt(Bt) for Bt that was in fact chosen.
● Bt → 0 for all Bt not taken.

Why? Because:

E[1[Bt chosen] * R(Bt)/σt(Bt)] =  E[R(Bt)].

1[Bt chosen] * R(Bt)/σt(Bt) is called an importance-weighted estimator of R(Bt).

Training to predict the mean of R(Bt)
~ training to predict mean of 1[Bt chosen] * R(Bt)/σt(Bt).

Cf. Yiling Chen, Ian A. Kash, Mike Ruberry, and Victor Shnayder (2014): Eliciting Predictions and 
Recommendations for Decision Making. ACM TEAC.



Bounded rational inductive agents

Oesterheld, Demski, Conitzer (2023): A theory of bounded inductive rationality. TARK ‘23.



The algorithm and the criterion

Regret learning: algorithm criterion
Importance-weighted estimation:  algorithm criterion
(Garrabrant inductors:) algorithm criterion
Bounded rational inductive agents: algorithm criterion



Hypothesis type
We consider hypotheses (formerly experts, now sometimes also bidders) that 

recommend (as usual) and estimate.

Intuition: Bidder says, “I think you should take the left box, and I promise that if you 
do so, you will get an expected reward ≥1.”

1 if Omega 
predicts that 
you take this 
box;
0 otherwise

Same as the 
other box +ε



Decision auctions

At each time t:

● Run a (first-price) auction between the bidders (a.k.a. hypotheses/experts).
● The winning bidder pays their bid (in “logical dollars”) gets to tell the agent to 

choose a box.
● The winning bidder receives (in “logical dollars”) the reward received by the 

agent.

Also: hand out an “allowance” (for exploration).
E.g. (in case of finite set of bidders): each bidder gets 1/t at time t.



High-level intuition for why this works

● Bidders who overbid run out of money.

⇒ Agent behavior is controlled by bidders who “keep their promises” (on 
average).

● If agent behavior is suboptimal, a bidder who knows better can bid higher and 
recommend the better action.



In the beginning, environment generates μ1,...,μ10  ~ Uniform({0,0.01,0.02,...,0.99,1}).

Reward of box i sampled from ~Normal(μi,1).

Say for each i from {1,...,10} and each v from {0,0.01,0.02,...,0.99,1} there is bidder 
who recommends i and estimates v-ε at every time step.

Bidders (i,v) with v > μi lose money whenever they win the auction.
⇒ They play no role in the limit.

Of the remaining bidders, the winners in the auctions will be the ones whose v is 
highest, i.e., whose μi is highest.

Box no. 10…Box no. 1

Conceptually easy problem



Newcomb’s problem

1 if you take 
this box;
0 otherwise

Say you’ve already learned (mathematical) language…

Same as the 
other box +ε

Decision auction learns to take the left box.



No need for randomization!



Optimizing over probability distributions

● Consider bidders who recommend the mixed strategy (½,½) and estimate ¾ – ε.
● W.p. 1 these bidders are profitable in the limit.
● Unless another bidder manages to bid ≥ ¾ – ε and “hold its promises”, these 

bidders win the auction most of the time.

1 if you take 
this box with 
probability 

≤½;
0 otherwise

0.5



Bounded rational inductive agency – the criterion I

● First part of rationality criterion:
Agent does not overestimate reward on average in the limit.

● Example: Say the agent chooses at each time step:

● For this requirement:
Can (presumably) estimate 0.5 or 0.38 all the time; or alternate 0,1.
Cannot estimate 0.6 all the time.

2t-th digit 
of π



Bounded rational inductive agency – the criterion II

● Definition: If

hypothesis h’s estimate in round t > agent’s estimate in round t,

we say the agent rejects h in round t.

● Second part of rationality criterion: If agent rejects h infinitely often, then:
○ h must be tested infinitely often.
○ In the tests of h up until time t, the rewards of h’s recommendations “substantially” 

underperform its estimates.



Thanks!


