
THE JEFFREY-BOLKER DECISION FRAMEWORK

DANIEL A. HERRMANN & GERARD ROTHFUS

Overview

The goal of this talk is the introduce to Jeffrey-Bolker decision theory frame-

work, and show that it has some useful features. We start by introducing Savage’s

decision theory framework, and discussing some of its shortcomings. We then in-

troduce the Jeffrey-Bolker framework and describe how it overcomes the problems

of Savage’s framework. We highlight the weaker uniqueness result of Bolker’s rep-

resentation theorem, and describe ways that it can be strengthened. We end with

highlighting two aspects of the Jeffrey-Bolker system. The first is its connection

to both formal and conceptual developments in measure theory; the second is its

ability to accommodate different decision theories (evidential, causal, etc.).

1. The Savage Framework

Savage envisions decision problems as comprised of three main components:

• A set of states of the world, S

• A set of consequences, C

• A set of acts, X ⊆ A = CS

An agent’s preferences are assumed to extend across all hypothetical acts (not

merely those in her immediate choice set X) and are captured in a binary pref-

erence relation, ⪰, on A, with f ⪰ g indicating that the agent does not strictly

prefer g to f . The symmetric and asymmetric parts of this relation are denoted by

∼ and ≻, respectively. Note: we can extend ⪰ to C by identifying consequences

with the constant acts that yield them.

P 1 (Ordering). ⪰ is a weak order: it is transitive and complete.

P 2 (The Sure-Thing Principle). For all f, g, h, h′ ∈ A and E ⊆ S,

fh
E ⪰ ghE if and only if fh′

E ⪰ gh
′

E .1

P 3 (State Neutrality). For all f ∈ A, nonnull events E ⊆ S, and x, y ∈ C,

x ⪰ y if and only if fx
E ⪰ fy

E.
2

1 Notation: If f, h ∈ A and E ⊆ S, let fh
E be the act that agrees with f on E and with h outside

of E.
2 An event E is null just in case indifference holds between any two acts that agree outside of
E.

1
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P 4. For all E1, E2 ∈ S, and x, y, z, w ∈ C with x ≻ y and z ≻ w,

yxE1
⪰ yxE2

if and only if wz
E1

⪰ wz
E2
.

P 5 (Non-triviality). There exist f, g ∈ A such that f ≻ g.

P 6 (Non-atomicity). For all f, g, h ∈ A with f ≻ g, there exists a partition of S,

{E1, ..., En}, such that for every i ≤ n, fh
Ei

⪰ g and f ⪰ ghEi
.

P 7. For all f, g ∈ A and events E ∈ S, (i) if for every s ∈ E, f ⪰E g(s), then

f ⪰E g, and (ii) if for every s ∈ E, g(s) ⪰E f , then g ⪰E f .3

Theorem 1 (Savage’s Existence Theorem). P1-P7 hold if and only if there ex-

ists a nonatomic4 finitely-additive probability measure P on S and a nonconstant

bounded utility function u : C → R such that for every f, g ∈ A,

f ⪰ g if and only if
∫
S u(f(s))dP (s) ≥

∫
S u(g(s))dP (s)

This entails that for any two simple acts, f and g, that yield constant output

within each cell of some finite partition, {E1, ..., En},
f ⪰ g if and only if

∑
i u(xi)P (Ei) ≥

∑
i u(yi)P (Ei),

where xi and yi are are the consequences yielded by f and g, respectively, within

event Ei.

Theorem 2 (Savage’s Uniqueness Theorem). P is unique and u is unique up

to positive affine transformation. That is, if (P, u) represents ⪰ in the manner

described above, then (P ′, u′) does so as well if and only if P = P ′ and u = au′+b

for some a ∈ R and b > 0.

2. Problems with the Savage Framework

Despite its many virtues, Savage’s framework encounters some objections.

(1) Alleged Counterexamples: Allais, Ellsberg, etc.

(2) State-Consequence Independence: P2 and P3 are only plausible if con-

sequences are characterized to a sufficient level of detail to ensure their

desirabilisitic independence from the state in which they are realized.

(3) Rectangular Field Assumption I : The agent has a preference ranking over

every possible function from states to consequences. However, given the

requirement of state-consequence independence, such functions may well

include the logically bizarre and difficult to interpret.

(4) Rectangular Field Assumption II : Relatedly, the fact that an agent must

be able to express preferences regarding the vast range of acts Savage

3 Notation: f ⪰E g just in case f ′ ⪰ g′ where f ′ and g′ agree, respectively, with f and g on E
but agree with one another off E. Satisfaction of the STP guarantees that choice of such f ′ and
g′ doesn’t matter and so ⪰E is well-defined.
4 A probability measure P is nonatomic just in case every event E it is defined on is such that
P (E) > 0 implies the existence of an F ⊂ E such that P (E) ̸= P (F ) and P (F ) > 0.
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requires may require her, in making such judgments, to revise her beliefs

regarding what is causally possible in radical ways.

(5) Dualism: Savage draws a sharp distinction between states, consequences,

and acts; of these only states are assigned probabilities. The agent does

not assign probabilities to her own acts; this is a clear way in which she

does not model herself as part of the world.

(6) Act-State Independence: Savage’s framework seeks to measure an agent’s

epistemic attitudes; but to get off the ground it needs to set up the acts

and states such that the agent views them as independent. It thus can’t

be used to measure this independence.

(7) Formulation Invariance: The above requirements (like state-consequence

desirabilisitic independence and act-state probabilistic independence) ren-

der the applicability of Savage’s decision theory highly sensitive to how

states and consequences are formulated.

3. The Jeffrey-Bolker Framework

One core innovation of the Jeffrey-Bolker framework is that everything—acts,

states, consequences—is the same type of object. This ends up erasing many

distinctions found in other theories, such as Savage’s. Thus, the preference ranking

is defined over one single algebra.

Definition 1. If A is an algebra, define A′ as A − F , where F is the bottom

element of A. A Boolean algebra A is atomless iff ∀A ∈ A′,∃B ∈ A′ : B → A.

A Boolean algebra is complete iff every subset of the algebra has both a supremum

and infimum in the algebra.

Axiom 1. ⪰ is defined on A′, where A is a complete, atomless Boolean algebra.

Remark 2. We interpret A ⪰ B as saying “B is not preferred to A” or equiv-

alently, “A is at least as preferred as B”. ≻ and ∼ are defined in the obvious

ways.

Axiom 3. ⪰ is a complete preorder: it is fully connected, reflexive, and transitive.

Axiom 4 (Averaging). If A,B ∈ A′ and A ∧B = F , then:

(1) if A ≻ B, then A ≻ A ∨B ≻ B; and

(2) if A ∼ B, then A ∼ A ∨B ∼ B.

Axiom 5 (Impartiality). For all A,B ∈ A′, whenever A ∧ B = F and A ∼ B,

then, if A ∨ C ∼ B ∨ C for some C ∈ A′ such that A ∧ C = B ∧ C = F , and

C ̸∼ A, then A ∨D ∼ B ∨D for every D ∈ A′ disjoint from A and B.
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Averaging ensures that the disjunction of two propositions lies between the two

propositions.5 Impartiality basically gives a way to test that the agent views two

disjoint propositions (A and B) as equally probable.6

Axiom 6 (Continuity). Let A = {A1, A2, . . .} ⊆ A be a sequence of propositions

such that An → An+1, for all n. Then, if A∗ is the supremum of A and B ≻
A∗ ≻ C, then there is some N such that B ≻ An ≻ C,∀n ≥ N . The analogous

condition holds for decreasing sequences of propositions.

We call a preference ordering that satisfies all of the axioms coherent.

Theorem 7 (Bolker’s Existence Theorem.). Let A be a complete atomless Boolean

algebra, and let ⪰ be a coherent preference ordering on A′. Then there exists a

probability measure P defined on A and a signed measure v on A such that, for

all A and B in A′:

A ⪰ B iff U(A) ≥ U(B)

where

U(A) =
v(A)

P (A)
, ∀A ∈ A′.

It follows that, for any A ∈ A′ and partition S = {Si}i∈I ⊂ A of A, we have

that we can calculate the utility of A as follows:

U(A) =
∑
i∈I

U(A ∧ Si)P (Si|A).

This makes clear that the representation is in fact one of expected utility.

Theorem 8 (Bolker’s Uniqueness Theorem.). Let P, P ′ be probability measures

on A and let v, v′ be signed measures on A. Then the pair P ′, v′ represents the

same preference order as P, v iff:

v′ = av + bP, and P ′ = cv + dP

where ad− bc > 0, cv(T ) + d = 1, and for all A ∈ A′, −d
c ̸= v(A)

P (A) .

This transformation of P and v to P ′ and v′ induces the following shift in U :

5 If you squint hard enough, then Averaging is somewhat similar to the irrelevance of independent
alternatives axioms present in other utility theories, and Savage’s Sure-Thing Principle. But they
are also very different.
6 Suppose A and B are disjoint (meaning A∧B = F ), and suppose that the agent is indifferent
between them (A ∼ B). In the background, we are imagining that the preference ranking has
arisen by the principle of maximizing expected utility. Then, the agent will be indifferent between
A ∨ C and B ∨ C only in the case where A and B are equiprobable. For, suppose not. For
concreteness, imagine that C ≻ A, and that B is more probable than A. Then the agent will
prefer A∨C to B ∨C, since this gives the agent a higher probability of getting the more desired
outcome, C. This is how this condition works as a kind of test for equiprobability. The axiom
says that this test will come out the same way, no matter which test proposition D is used.
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U ′ =
v′

P ′ =
av + bP

cv + dP
=

aU + b

cU + d
.

4. How Jeffrey-Bolker Addresses the Savage Limitations

But why not be a bit more holistic, and view the agent as part

of nature. A state of nature would then specify what act the agent

performs, along with everything else one usually takes it to specify.

∼ Richard Jeffrey, Frameworks for preferences

We can see that the Jeffrey-Bolker Framework addresses some of the previously

mentioned issues with the Savage framework.

(1) State-Consequence Independence: This is not required.

(2) Dualism: The agent assigns probabilities to propositions about her own

acts like anything else.

(3) Rectangular Field Assumptions I & II : The agent’s preferences are defined

on a set that is closed only on logical operations, not causal (or functional)

operations. This allows the preferences to only be defined on propositions

that the agent takes to possible.

(4) Act-State Independence: This is not required.

(5) Formulation Invariance: Jeffrey-Bolker is partition invariant, meaning you

can calculate with respect to any partition and get the same answer.

5. Strengthening the Uniqueness Result

There are two main approaches to strengthening Bolker’s Uniqueness Theorem

to more closely resemble Savage’s.

(1) Unbounded Utility : If desirabilities are unbounded, that is, if the range

of U is unbounded above and below, we can secure the uniqueness of P .

Jeffrey offers the following as a qualitative condition on preference that is,

in the presence of the preceding axioms, necessary and sufficient for U to

be unbounded in the manner sufficient for P ’s uniqueness.

• The Unboundedness Condition: Indifference holds between all propo-

sitions D that satisfy conditions a and b below are ranked together.

(a) WhenerA,B,C are pairwise incompatible propositions of which

A and B are ranked with T and C is ranked above A∨C, which

in turn is ranked with B ∨ C and with or above G, the propo-

sition A ∨B ∨ C is ranked above D.7

(b) WhenerA,B,C are pairwise incompatible propositions of which

A and B are ranked with G and C is ranked below A∨C, which

7 G is an arbitrarily chosen proposition such that G ≻ T ≻ ¬G.
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in turn is ranked with B ∨ C and with or below T , the propo-

sition A ∨B ∨ C is ranked below D.

(2) Comparative Probability : Another approach to securing the uniqueness

of P involves introducing some sort of primitive comparative probability

relation into our modelling framework.

• Ahmed’s Version: Introduce an equivalence relation, ≈, on A. A ≈ B

is interpreted to mean that the agent is equally confident of A and

B. If we (i) require that A ≈ B for some A,B ∈ A such that

V (A) > V (B), and (ii) assume that among candidate pairs (P,U)

that represent ⪰ at least one is such that P (X) = P (Y ) whenever

X ≈ Y , then we can secure the result that there is a unique probabil-

ity measure P and unique up to positive affine transformation utility

function U that both represents ⪰ in the required expectational fash-

ion and agrees with ≈.

(3) Conditionals: A final approach, proposed by Richard Bradley, involves en-

riching Jeffrey-Bolker’s Boolean algebra to include indicative conditionals

and then supplying axiomatic constraints on agent’s preferences over such

conditionals.

6. Connection to Measure Theory

Here we aim to draw attention to the use of a complete atomless Boolean

algebra. While this may seem like a very specific and odd choice, driven by the

the representation theorem, there are in fact many reasons to favour such a choice.

This is because there is a deep connection here to measure algebras.

Definition 2. A measure algebra is a pair (B, µ) where B is a Boolean σ-

algebra and µ is a strictly positive probability measure on B.

A common way to construct a measure algebra is to start off with the Lebesgue

measurable sets on the unit interval, and then quotient out by the measure zero

σ-ideal. Thinking of this procedure, one can see that this procedure destroys all

fine-grained measure zero structure, and that the resulting structure does not

contain any singletons of possible worlds (which would be atoms).

Measure algebras constructed in this way are complete and atomless, and so are

σ-isomorphic to A used in the Jeffrey-Bolker framework. Thus, we might ask, are

there independent motivations for using measure algebras for probability spaces?

Kolmogorov, contra his original foundational framework for probability theory

using what he calls the “set theoretical” system of probability, advocated for mea-

sure algebras. Two advantages he points out are of interest for us. The advantages

are understood as fixing two defects of the set-theoretical system.
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1 st, the notion of an elementary event is an artificial superstruc-

ture imposed on the concrete notion of an event. In reality, events

are not composed of elementary events, but elementary events orig-

inate in the dismemberment of composite events. . . .

3 rd, we are forced to give up the principle, formulated in numerous

classical works in probability theory, according to which an event

of probability zero is absolutely impossible.. . .

All of the inconveniences can be avoided if we base probability the-

ory on [measure algebras]. (p.61, 148, Algèbres de Boole métriques

complètes, translated by Richard Jeffrey in 1995 for Philosophical

Studies)

7. Modeling Many Decision Theories

The Jeffrey-Bolker framework, as we’ve presented it, is simply a framework for

modelling rational attitudes, specifically preferences and (if we wish) comparative

probabilities. But it is most commonly associated with a particular account of

rational choice as well, namely, Evidential Decision Theory (EDT). This is the

most natural decision rule one can state within the Jeffrey-Booker setup, and the

one favored by Jeffrey.

Given a decision problem characterized by a partition of act propositions, choose

one that maximizes U. But those sympathetic to the Jeffrey-Booker framework are

free to consider other decision rules as well. Newcomb’s Problem is the standard

motivation for doing so.

Philosophers like Joyce and Bradley have sought to extend the Jeffrey-Bolker

system to incorporate distinctively causal elements with an aim toward stating a

causal decision rule. Joyce invites us to think of the instrumental value of an act as

corresponding to the utility of the tautology on the supposition of its performance.

This is in line with EDT, if we understand supposition in terms of learning and

define that U(A|B) = U(A&B):

EDT (A) = U(A) = U(T&A) = U(T |A)
But, Joyce suggests, the correct form of supposition to employ here comes apart

from learning. For causal decision theorists, the requisite sort of supposition is

subjunctive or interventional. To find the instrumental value of A, I assess the

utility of the status quo that would result were I (perhaps contrary to fact) to

intervene to make A true.

Formally, Joyce imagines that when faced with a decision problem given by

a partition of acts, agents have suppositional preferences and comparative prob-

abilities given by a family of preference relation/comparative probability pairs



8 THE JEFFREY-BOLKER FRAMEWORK

(⪰X ,�X) that each satisfy the Jeffrey-Booker axioms and are so each repre-

sented by a pair (UA, PA). PA is often called an imaging function and captures

the probability of various propositions on the subjunctive supposition that A.

Rational choice then goes by:

CDT (A) = UA(T ) =
∑

S PA(S|T )UA(S&T ) =
∑

S PA(S)UA(S)

One standard way to derive PA is to employ aK-partition, a privileged partition

of propositions that are assumed to be causally independent of each act A and to

determine the causal impact of each act A. We then define:

PA(B) =
∑

i P (B|A&Ki)P (Ki)

UA(B) =
∑

i U(B|A&Ki)P (Ki)

These can then determine CDT values and suppositional preferences using U

and P.

Joyce’s Existence and Uniqueness Theorems show that agents whose supposi-

tional preferences satisfy various axioms can be representable as CDT agents. This

set up is significantly more complicated and demanding than EDT, which, beyond

the resources the Jeffrey-Booker setup itself provides, only requires a specification

of an act partition. However, it continues to enjoy many advantages provided by

the Jeffrey-Bolker framework (act probabilities are allowed, no awkward rectan-

gular field assumptions, etc.)
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